MIT FIRST GRADE COLLEGE, Mysuru

First Internals - IV B.COM/BBA ---July, 2021-2022

Sub: Quantitative Techniques

PART-A

Answer any Three questions of the following
$(10 \times 3=30)$
1.Solve by using Cramer's rule

$$
\begin{aligned}
& 3 x+2 y+5 z=32 \\
& 2 x+5 y+3 z=31 \\
& 5 x+3 y+2 z=27
\end{aligned}
$$

2.a) A man occupies a post with the starting salary of RS $3,60,000$ per annum, he get 10% increase in his salary every year for 5 years. What is his salary in the $5^{\text {th }}$ year and what is his total salary in the $1^{\text {st }} 5$ years?
b) Find the sum of all natural numbers between 500 and 1000 which are divisible by 10 ?
3. If $A=\left(\begin{array}{lll}2 & 1 & 2 \\ 3 & 1 & 1 \\ 1 & 3 & 2\end{array}\right)$ and $B=\left(\begin{array}{ccc}-1 & 1 & 2 \\ 2 & -1 & 1 \\ 1 & 2 & 1\end{array}\right)$

Prove that $(\mathrm{AB})^{\prime}=\mathrm{B}^{\prime} \mathrm{A}^{\prime}$
4. Find the 3 numbers in GP, such that their sum is 65 and their product is 3375

PART-B

Answer any Two of the following questions
5. Find the $25^{\text {th }}$ term of the series $8+12+16+20$
6. Which term of the sequence $3,6,12 \ldots \ldots$.is 1536 ?
7. If $\mathrm{A}=\left(\begin{array}{ccc}8 & -7 & -3\end{array}\right) \quad$ Find a) $\mathrm{A}+\mathrm{A}^{\prime}$
$\begin{array}{lll}4 & 17 & -11\end{array}$
$\begin{array}{lll}13 & -9 & 2\end{array}$
b) $\mathrm{A}^{\prime}-\mathrm{A}$

MIT FIKST GRADE COLIEGE * F-29/1, 3̇rd Stage, Industrial Suburb, Fort Mohalla, Mysuru-570 008
********All THE BEST********

MIT First Grade College
Manandavadi Road, Opp. to Railway Workshop Ground, Mysore - 570 008. Name of the Student... Pradhyumna.R.:

N2007767)
Subject....QUANTITATIVE TECHNIQUES.

| Reg. No. $\frac{N 2007767}{2984}$ |
| :---: | :---: |

Course : B.B.M., B. Com., B.C.A.., \& M.Com.,
Marks Obtained 40140
Sem: $\bar{\sim}$ Sen $\sec :{ }^{\prime} B$ '.

$$
12817.22
$$

Part - B!
5.

$$
\begin{aligned}
& 8,12,16,20 \ldots \\
& a=8, d \\
&=T_{2}-T_{1} \\
&=12-8 \\
&=4 . \\
& T_{n}=a+(n-1) d . \\
& T_{25}=8+(25-1) 4 . \\
& T_{25}=8+24 \times 4 . \\
& T_{25}=8+96 . \\
& \therefore T_{25}=104 .
\end{aligned}
$$

$$
a=8, \quad d=T_{2}-T_{1}, \quad T_{25}=?, n=25 .
$$

The $25^{\text {th }}$ term of the series $8+12+16+20 \ldots$ is 104 .
6. $3,6,12 \ldots 1536$.

$$
\begin{aligned}
a=3, r & =\frac{T_{2}}{T_{1}}=\frac{6}{3}=2, \quad T_{n}=1536, n=? \\
T_{n} & =a \cdot n^{n-1} . \\
1536 & =3 \times(2)^{n-1} . \\
\frac{1536}{3} & =(2)^{n-1} . \\
512 & =(2)^{n-1} \quad \\
(2)^{9} & =(2)^{n-1} \quad\left[\text { since }(2)^{9}=512\right] . \\
9 & =n-1: \\
\therefore n & =9+1=10 .
\end{aligned}
$$

\therefore The cloth tam of the series $3,6,12 \ldots$. . is .1536.
1.

$$
\begin{aligned}
& \text { Port - 'A'. } \\
& 3 x+2 y+5 z-32 \\
& 21 x+5 y+3 z=31 \\
& 5 x+3 y+2 z=27 \text {. } \\
& {\left[\begin{array}{lll}
3 & 2 & 5 \\
2 & 5 & 3 \\
5 & 3 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
32 \\
31 \\
27
\end{array}\right]} \\
& \text { l) }\left[\begin{array}{ccc}
t & - & t \\
3 & 2 & 5 \\
2 & 5 & 3 \\
5 & 3 & 2
\end{array}\right] \\
& \Delta=3\left|\begin{array}{ll|l|l|l|ll}
5 & 3 & -2 & 3 & +5 & 2 & 5 \\
3 & 2 & & 2 & & 5 & 3
\end{array}\right| \\
& \begin{array}{l}
=3[(5 \times 2)-(3 \times 3)]-2[(2 \times 2)+(3 \times 5)]+5[(2 \times 3)-(5 \times 5) \\
=3[10-9]-2[4-15]+5[61-25] .
\end{array} \\
& =3[10-9]-2[4-15]+5[61-25] . \\
& =3(1)-2(-11)+5(-19) \text {. } \\
& =3+22-95 \text {. } \\
& =25-95 \\
& \Delta=-70
\end{aligned}
$$

$$
\begin{aligned}
4 \Delta x & =\left[\begin{array}{ccc}
32 & 2 & 5 \\
31 & 5 & 3 \\
27 & 3 & 2
\end{array}\right] \\
\Delta x & =32\left|\begin{array}{ll|l|ll}
5 & 3 \\
3 & 2
\end{array}\right|-2\left|\begin{array}{ll}
31 & 3 \\
27 & 2
\end{array}\right|+5\left|\begin{array}{ll}
31 & 5 \\
27 & 3
\end{array}\right| \\
& =32[(5 \times 2)-(3 \times 3)]-2[(31 \times 2)-(3 \times 27)]+5[31 \times 3)-64 \\
& =32[10+9]-2[62-81]+5[93-135] . \\
& =32(1)-2(-19)+5(-42) .
\end{aligned}
$$

$$
\begin{aligned}
& =32+38-210 \text {. } \\
& =70-210 \text {. } \\
& \Delta x=-140 \\
& \text { G } \Delta y=\left[\begin{array}{ccc}
3 & & + \\
3 & 32 & 5 \\
2 & 31 & 3 \\
5 & 27 & 2
\end{array}\right] \\
& \left.\Delta y=3\left|\begin{array}{ll|l|ll|l|ll}
31 & 3 & -32 & 2 & 3 & +5 & 2 & 31 \\
27 & 2
\end{array}\right| \quad \begin{array}{ll}
5 & 2
\end{array} \right\rvert\, \\
& =3[(31 \times 2)-(3 \times 27)]-32[(2 \times 2)-(3 \times 5)]+5[(2 \times 27)-(31 \times 5)] \\
& \text { - } 3[62-81]-32[4-15]+5[54+55] \text {. } \\
& =3(-19)-32(-11)+5(-101) \text {. } \\
& =-57+352-505 \text {. } \\
& =352-562 \\
& \Delta y=-210 \text {. } \\
& \text { () } \Delta z=\left[\begin{array}{lll}
1 & 2 & 32 \\
2 & 5 & 31 \\
5 & 3 & 27
\end{array}\right] \\
& \left.\Delta z=3\left|\begin{array}{ll}
5 & 31 \\
3 & 27
\end{array}\right|-2\left|\begin{array}{ll}
2 & 31 \\
5 & 27
\end{array}\right|+32 \right\rvert\, \begin{array}{ll}
2 & 5 \\
5 & 3
\end{array} . \\
& =3[(5 \times 27)-(31 \times 37)-2[(2 \times 27)-(31 \times 5)]+32[(2 \times 3)-(5 \times 5)] \\
& =3[135-93]-2[54-155]+32[6-25] . \\
& 3(42)-2(-101)+32(-19) \\
& =\quad 126+202-608 \text {. } \\
& =328-608 \\
& \Delta z=-280 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
\therefore x & =\frac{\Delta x}{\Delta}=\frac{+140^{2}}{+70 i}=2 . \\
y & =\frac{\Delta y}{\Delta}=\frac{+210^{3}}{+70}=3 \\
z & =\frac{\Delta z}{\Delta}=+280^{4} \\
& =4 .
\end{aligned}
$$

\therefore The 3 riumbers x, y, z are $2,3+4$ respect

- Velification:
(1) Substituting $x, y \& z$ values in EqM (1).

$$
\begin{gathered}
3 x+2 y+5 z=32 \\
3(2)+2(3)+5(4)=32 \\
6+6+20=32 \\
32=32 \\
\mathrm{CHS}=\text { RHS }
\end{gathered}
$$

3. $A=\left[\begin{array}{lll}2 & 1 & 2 \\ 3 & 1 & 1 \\ 1 & 3 & 2\end{array}\right] \quad B=\left[\begin{array}{ccc}-1 & 1 & 2 \\ 2 & -1 & 1 \\ 1 & 2 & 1\end{array}\right]$
\Rightarrow LHS: (AB).

$$
L(A \times B)=\left[\begin{array}{lll}
2 & 1 & 2 \\
3 & 1 & 1 \\
1 & 3 & 2
\end{array}\right] \times\left[\begin{array}{rrr}
-1 & 1 & 2 \\
2 & -1 & 1 \\
1 & 2 & 1
\end{array}\right]
$$

$$
=\begin{aligned}
& (2 \times-1)+(1 \times 2)+(2 \times 1)(2 \times 1)+(1 \times-1)+(2 \times 2)(2 \times 2)+(1 \times 1)+(2 \times 1) \\
& \\
& (3 \times-1)+(1 \times 2)+(1 \times 1)(3 \times 1)+(1 \times-1)+(1 \times 2)(3 \times 2)+(1 \times 1)+(1 \times 1) \\
& (1 \times-1)+(3 \times 2)+(2 \times 1)(1 \times 1)+(3 \times-1)+(2 \times 2)(1 \times 2)+(3 \times 1)+(2 \times 1
\end{aligned}
$$

$$
=\left[\begin{array}{ccc}
-2+2+2 & 2-1+4 & 4+1+2 \\
-3+2+1 & 3-1+2 & 6+1+1 \\
-1+6+2 & 1-3+4 & 2+3+2
\end{array}\right]
$$

$$
\begin{aligned}
& =\left[\begin{array}{lll}
2 & 5 & 7 \\
0 & 4 & 8 \\
7 & 2 & 7
\end{array}\right] \Rightarrow(A \times B) . \\
& \therefore(A \times B)^{\prime}=\left[\begin{array}{lll}
2 & 0 & 7 \\
5 & 4 & 2 \\
7 & 8 & 7
\end{array}\right] \\
& \Rightarrow \text { RHS: } B^{\prime} A^{\prime} \text {. } \\
& \overline{B^{\prime}}=\left[\begin{array}{ccc}
-1 & 2 & 1 \\
1 & -1 & 2 \\
2 & 1 & 1
\end{array}\right] \\
& \text { c) } A^{\prime}=\left[\begin{array}{lll}
2 & 3 & 1 \\
1 & 1 & 3 \\
2 & 1 & 2
\end{array}\right] \\
& \text { c) } A^{\prime} \cdot A^{\prime}=\left[\begin{array}{ccc}
-1 & 2 & 1 \\
1 & -1 & 2 \\
2 & 1 & 1
\end{array}\right] \times\left[\begin{array}{lll}
2 & 3 & 1 \\
1 & 3 \\
2 & 1 & 2
\end{array}\right] \\
& =\left[\begin{array}{l}
(-1 \times 2)+(2 \times 1)+(1 \times 2)(-1 \times 3)+(2 \times 1)+(1 \times 1)(-1 \times 1)+(2 \times 3)+(1 \times 2) \\
(1 \times 2)+(-1 \times 1)+(2 \times 2)(1 \times 3)+(-1 \times 1)+(2 \times 1)(1 \times 1)+(-1 \times 3)+(2 \times 2) \\
(2 \times 2)+(1 \times 1)+(1 \times 2)(2 \times 3)+(1 \times 1)+(1 \times 1)(2 \times 1)+(1 \times 3)+(\times 2)]
\end{array}\right. \\
& =\left[\begin{array}{ccc}
-2+2+2 & -3+2+1 & -1+6+2 \\
2-1+4 & 3-1+2 & 13+4 \\
4+1+2 & 6+1+1 & 2+3+4
\end{array}\right] \\
& =\left[\begin{array}{lll}
2 & 0 & 7 \\
5 & 4 & 2 \\
7 & 8 & 7
\end{array}\right]=B^{\prime} A^{\prime} . \\
& \therefore(A B)^{\prime}=B^{\prime} A^{\prime} \text {. } \\
& \text { LHS }=\text { RHS } \\
& \text { Alence prowed }
\end{aligned}
$$

4. Let the 3 numbers in GP be $a, a, a n$.
1) Product:

$$
\begin{gathered}
\frac{x \theta d u c t:}{x} \times a \times a x=3375 \\
a^{3}=3375 \\
a^{3}=15^{3} \\
\therefore a=15
\end{gathered}
$$

b) Sum:

$$
\begin{aligned}
& \frac{a}{r}+\frac{a}{1}+\frac{a r}{r}=65 . \quad \text { [Takins L(Mi-c, } r \text {]. } \\
& \begin{aligned}
& a+a r+a r^{2}=65 . \\
& r
\end{aligned} \\
& a+a r+a r^{2}=659 \text {. } \\
& 15+15 r+15 r^{2}=65 r \text { : [Substituting ' } a \text { ' value]. } \\
& 15+15 r+15 r^{2}-65 r=0 \text {. } \\
& 15-50 r+15 r^{2}=0 . \quad[\div \text { by } 5]: \\
& 3-10 r+3 r^{2}=0 \ldots \\
& 3 r^{2}-10 r+3=0 \text {. } \\
& 3 x^{2}-9 x-1 x+3=0 \text {. } \\
& 13 x(x-3)-1(x-3)=0 \text {. } \\
& (3 x-1)=0 \quad \&(x-3)=0 \text {. } \\
& 3 h=1 \\
& x=3 \\
& x=\frac{1}{3}
\end{aligned}
$$

9 Substituting a \& 9 values: f
(i) $a=15+x=\frac{1}{3}$

$$
\begin{aligned}
& \text { 1) } \frac{a}{x}=15 \div \frac{1}{3}=15 \times \frac{3}{1}=45 \\
& \text { 2) } a=15 .
\end{aligned}
$$

3) $a x=15 \times \frac{1}{3}=5$
(ii) $a=15 \quad$ \& $r=3$.

$$
\begin{aligned}
\text { 1) } \frac{a}{a} & =\frac{155}{3}=5 \\
\text { 2) } a & =15 \\
\text { 3) } a x & =15 \times 3=45
\end{aligned}
$$

17 The 3 numbers in GP are $45,15+5$ of

$$
5,15 k 45
$$

(averificafion:

$$
\begin{array}{c|r}
\text { Sun }=65 & \text { Product }=3375 \\
\hline 5+15+45=65 & 5 \times 15 \times 45=3375 \\
\hline 65=65 & 3375=3375
\end{array}
$$

2. a)

Initial / Starting salary $=3,60,000$.
$\left.\begin{array}{cc|c} \\ \text { Second year salary }=3,96,000 . & 3,60,000 \times 101,80 \\ & +36,00 \pi \\ 3,60,000,3,96,000 \ldots \ldots & 3,96,000\end{array}\right]$

$$
a=3,60,000, \quad \pi=\frac{T_{2}}{T_{1}}=396000=1.1 \quad, \quad T_{5}=?, 50000=?, n=5
$$

$4 T_{5}\left(5^{\text {th }}\right.$ year salary $)$.

$$
\begin{aligned}
T_{n} & =a \cdot r^{n-1} \\
& =3,60000 \times(1.1)^{5-1} . \\
& =3,600 \times(1.1)^{4} . \\
& =\$ 5,25,600 \times 1.46 .
\end{aligned}
$$

l) S_{5} (Total salary in $1^{18} 5$ years).

$$
\begin{aligned}
& S_{n}=\frac{a\left(\lambda^{n}-1\right)}{S_{5}-1} \\
& S_{5}=\frac{360.000\left((1.1)^{5}-1\right)}{1.1-1}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{3,60,000(1.61-1)}{0.1} \\
& =\frac{3,60,000 \times 0.61}{0.1} \\
& =\$ 21,96,000
\end{aligned}
$$

\therefore His salary in the $5^{\text {th }}$ year was $¥ 5,25,600 \mathrm{f}$ Total salary in first 5 years was $₹ 21,96,000$.
b)

$$
\begin{aligned}
& 500,510,520 \cdots 1, \cdots 1000, \\
& a=500, d=T_{2}-T_{1}=510-500=10, T_{n}=1000, S_{n}=?, n=? \\
& 4, T_{n}=a+(n-1) d \\
& 1000=500+(n-1) 10 . \\
& 1000=500+(n-1)(0 . \\
& 1000-500=10(n-1) . \\
& 500=10(n-1) . \\
& 500=n-1 . \\
& \frac{10}{10} \\
& 50=n-1 . \\
& \therefore n=50+1 \Rightarrow 51
\end{aligned}
$$

$\Rightarrow S_{5 i}$.

$$
\begin{aligned}
S_{n} & =\frac{n}{2}[2 a+(n-1) d] . \\
S_{51} & =\frac{51}{2}[2 \times 500+(51-1) 10] \\
& =25.5[1000+50 \times 10] . \\
& =25.5[1000+500] . \\
& =25.5 \times 1500 . \\
& =[28,250]
\end{aligned}
$$

\therefore The sum of all natural numbers between 500 \& 1000 , which are divisible by 10 is 38,250 .
7.

$$
A=\left[\begin{array}{ccc}
8 & -7 & -3 \\
4 & 17 & -11 \\
13 & -9 & 2
\end{array}\right]
$$

a)

$$
\begin{aligned}
& A+A^{\prime} \\
& 4 A^{\prime}=\left[\begin{array}{ccc}
8 & 4 & 13 \\
-7 & 17 & -9 \\
-3 & -11 & 2
\end{array}\right] \\
& A+A^{\prime}=\left[\begin{array}{ccc}
8 & -7 & -3 \\
4 & 17 & -1 \\
13 & -9 & 2
\end{array}\right]+\left[\begin{array}{ccc}
8 & 4 & 13 \\
-7 & 17 & -9 \\
-3 & -11 & 2
\end{array}\right] \\
& =\left[\begin{array}{lll}
8+8 & -7+4 & -3+13 \\
4+(-7) & 17+17 & -11+(-9) \\
13+(-3) & -9+(-11) & 2+2
\end{array}\right] \\
& =\left[\begin{array}{ccc}
8+8 & -7+4 & -3+13 \\
4-7 & 17+17 & -11-9 \\
13-3 & -9-11 & 2+2
\end{array}\right] \Rightarrow\left[\begin{array}{ccc}
16 & -3 & 10 \\
-3 & 34 & -20 . \\
10 & -20 & 4
\end{array}\right]=A+A^{\prime} .
\end{aligned}
$$

b)

$$
\begin{aligned}
& A^{\prime}-A=\left[\begin{array}{ccc}
8 & 4 & 13 \\
-7 & 17 & -9 \\
-3 & -11 & 2
\end{array}\right]-\left[\begin{array}{ccc}
8 & -7 & -3 \\
4 & 17 & -11 \\
13 & -9 & 2
\end{array}\right] \\
& =\left[\begin{array}{ccc}
8-8 & 4-(-7) & 13-(-3) \\
-7-4 & 17-17 & -9-(-11) \\
-3-13 & -11-(-9) & 2-2
\end{array}\right] \\
& =\left[\begin{array}{ccc}
8-8 & 4+7 & 13+3 \\
-7-4 & 17-17 & -9+11 \\
-3-13 & -11+9 & 2-2
\end{array}\right] \Rightarrow\left[\begin{array}{ccc}
0 & 11 & 16 \\
-11 & 0 & 2 \\
-16 & -2 & 0
\end{array}\right] \Rightarrow A^{\prime}-A
\end{aligned}
$$

